
 

 

  
Abstract—Being able to deliver drugs to a targeted cell in the 

body would certainly enhance the future treatment of patients, 
especially those suffering from cancer. In such complex physical 
areas there is often a lack of well-formed conceptual ideas and 
sophisticated mathematical modelling in the analysis of the 
fundamental issues involved in the drug delivery process. Progress in 
many of these areas will be accelerated by means of accurate applied 
mathematical modelling which embodies the correct physical and 
chemical principles. In 2003, Göran Frenning proposed and 
numerically solved a mathematical model of the drug dissolution and 
release processes. The model consisted of two coupled nonlinear 
partial differential equations. Later, Chontita and Lenbury (2012) 
made use of appropriate transformation with travelling wave 
coordinate to derive analytical solutions the an equivalent set of 
ordinary differential equations when the wave was assumed to be 
moving at constant speed. Here, we present some new travelling 
wave solutions of the model of controlled drug release, in a planar 
geometry, for certain different cases in which analytical solutions can 
be derived exactly. We investigate how different values of important 
physical parameters effect the shapes of the travelling waves which 
should be useful for the proper design of the drug release system. 

 
Keywords—Controlled drug release, Analytical solution, 

Traveling wave coordinate 

I. INTRODUCTION 
ATHEMATICAL and computer modelling has played 
an increasingly important role in pharmaceutical 

industry, providing valuable assistance in the design and 
manufacture of advanced materials and many nanodevices. 

The United States Food and Drug Administration Critical 
Path Initiative has recently made model-based drug 
development, including drug and disease modeling, one of its 
important goals (www.fda.gov/oc/initiatives/criticalpath). 
Since it has now become commonly acknowledged that 
detailed and accurate modelling will accelerate the 
development of targeted drug delivery applications, new 
discoveries and theories generated by model construction have 
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been appearing in many frequently cited biologically related 
literatures. 

In the formulation of pharmaceutical products, the use of 
controlled-release technology is gaining increasing attention 
due to its inherent advantages [1]. The objective of the use of 
sustained release dosage forms is to be able to release the drug 
at a predetermined rate. They are therefore designed to be 
capable of maintain a sustained drug level for a satisfactory 
period of time without incurring side effects above an 
acceptable extent [1]. The need to decrease the side effect of 
drug by preventing the fluctuation of the therapeutic drug 
concentration in the body, and improve a patient’s quality of 
life by reducing frequency of drug applications, has led to 
intense research on sustained release. 

Moreover, according Kumar et al. [1], increased 
complications and expense involved in marketing of new drug 
forms necessitates the pharmaceutical industry to focus greater 
attention on design and manufacture of sustained release or 
controlled release drug delivery systems. The matrix system is 
popular and has found wide usage since it makes possible 
prolonged and controlled release of a drug that is dissolved or 
dispersed. In recent years, a number of sustained release drug 
forms have been marketed, and funding have become 
noticeably available for research which concentrates on the 
design of sustained release process for poorly water soluble 
drugs. 

To be able to produce well characterized and reproducible 
dosage forms, which control drug entry into the body 
according the specifications of the required drug delivery 
profile, knowledge of both physical and polymer sciences is 
required [2]. Specifically, the drug sorption behaviour of a 
sorbent depends on many factors, including the structure and 
the chemical composition of the sorbent material. 

According to Boutayeb and Chetouani [3], with drug 
delivery by the matrix system, the rate of drug release is 
principally controlled by the delivery system itself, although 
several surrounding conditions, such as pH, enzymes, ions, 
motility and physiological conditions can also influence the 
outcome. 

As explained in [5], when drug released from a matrix is 
controlled by diffusion through the polymeric matrix, its 
release kinetics obey Fick's 1st and 2nd laws [5] according to 
the following equations. 

xJ DC= −  (1) 
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t xxDCC = −  (2) 
where J is the diffusional flux of the drug; D the represents 
diffusional coefficient; C the concentration of the drug; and x 
is the distance of diffusion. 

As explained in [6], when drug release is dominated by 
surface erosion, Hopfenberg’s equation gives comparatively 
good prediction of drug delivery in spherical, cylindrical, and 
planar geometrical forms. If the drug concentration is 
sufficiently low so that all drugs can be dissolved, and the 
dissolution process progresses fast enough, we may easily 
determine the release rate [5]. In such situation of drug 
release, all drug may be assumed to be completely dissolved 
before any release has taken place and we the heat conduction 
equation can be applied to determine the drug concentration in 
the matrix. 

In the more general type of drug release, where the drug 
concentrations are higher, or the solubility is low, two forms 
of drugs, namely the solid and dissolved forms, coexist in the 
matrix. In such a scenario the drug release process becomes 
noticeably more complex. For this more general situation 
where drug loading is much higher than drug solubility 

( 0 sC C ), Higuchi [7] propose a model which has been 
found to perform well for planar matrix under the perfect sink 
assumption. 

The Higuchi model, originally formulated for drug release 
from ointment bases containing drugs in suspension [7], has 
since been subject to several attempts at generalizations and 
modifications [8]-[12]. Then, in 2003, Frenning and Strømme 
[13] proposed a similar model which focuses on the release of 
drug from spherical pellets into a finite volume of dissolution 
medium. In formulating the model, it was assumed that some 
of the dissolved drug could become immobilized and absorped 
into the pellet constituents. 

Later in the same year, Frenning [14] readjusted the model 
in [13] to disregard drug absorption, assuming that the 
diffusion coefficient is concentration-independent. He then 
derived an “analytical short-time approximation” to the 
solution under the assumption of perfect sink conditions [14]. 

In 2012, Rattanakul and Lenbury [15] analytically obtained 
exact solutions to the model equations by introducing the 
travelling wave coordinate in the situation that the wave is 
presumably moving at a constant speed which allows the 
transformation of the reaction diffusion equations into a 
system of ordinary differential equations. A stability analysis 
was carried out on the model system before deriving the wave 
front solutions written in a specifically convenient form. 

Here, we derive more travelling wave solutions of the 
model of controlled drug release, in a planar geometry, will be 
derived for certain new cases in which analytical solutions can 
be derived exactly such that the solutions satisfy physically 
meaningful boundary and initial conditions. Plots of travelling 
wave fronts of drug diffusion in different cases are then 
presented. 

II. REFERENCED MODEL 

In [14], Frenning focused on a planar matrix system whose 
normal is in the x direction. It was assumed that the lateral 

dimensions of the system are much larger than its thickness L, 
so that the process of drug release could essentially be 
considered to be one-dimensional [14]. The boundary at x = 0 
is assumed to be virtually impenetrable to the drug, while the 
matrix is assumed to be in contact with the liquid at x L= . 

Under the perfect sink condition assumption, the matrix is 
supposed to be in contact with a well-mixed dissolution 
medium, the volume of which is large enough so that we can 
be assured that the drug concentration in the dissolution 
medium is virtually zero at all times. In order to simplify the 
analysis, it was assumed by Frenning [14] that liquid 
absorption occurs at a much faster rate than drug dissolution 
and subsequent release. Thus, the matrix which contains finely 
dispersed solid drug is fully wetted in the initial state. Also, in 
the initial state, the entire drug is present in the solid form 
[14]. As explained in [14], it is possible to describe drug 
dissolution and release by the following equations [14]. 

t xx td Dd s= −  (3) 
2 / 3 ( )t d ss k s c dε= − −  (4) 

where ( , )d t x  is the concentration of drug in the dissolved 
phase, ( , )s t x  that in the solid phase, t the time, cs the 
saturation constant, ε the porosity, d the drug diffusivity, and 
kd is the dissolution rate. The initial condition [14] 

(0, ) 0d x =  (5) 

0(0, )s x s=  (6) 
should be imposed to assure that all drug is assumed to be 
present in the solid form in the initial state [14]. 

The boundary condition 

0 0x xd = =  (7) 

is imposed if the interface at x = 0 is supposed to be 
impenetrable to the drug. However, if we relax the 
impenetrability condition to 

0 1x xd =  (8) 

instead, then the interface will be “almost” impenetrable to the 
drug. Finally, we impose the condition 

( , ) 0s t L =  (9) 
so that the drug concentration at x L=  is kept at zero due to 
the perfect sink condition. 

We next introduce the travelling wave coordinate 
z x tν= ± − , where ν  is the constant velocity at which the 
wave is moving. By substituting z in (3) and (4), we obtain the 
following system of ordinary differential equations: 

    vd Dd sν′ ′′ ′− = +  (10) 

( )2 / 3s ks dν γ′− = − −  (11) 
where ()′ denotes the derivative with respect to z, k  stands for 

dk , and γ  stands for scε . Integrating (5) and combining 
with (6), we are led to the following single second-order 
differential equation terms of d. 

 ( ) ( )2 / 3
2 / 3 0    kDd vd vd Dd dγ

ν
′′ ′ ′+ + + − =  (12) 
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III. WAVE FRONT SOLUTIONS 

We shall derive analytic solutions for the model equation 
(12) by writing the solution in a specifically convenient form 
as follows: 

3 / 2  C d Ddν ′= +  (13) 
and seek a solution of the form 

m nd AC BC′ = +  (14) 
Thus, we have 

1/ 23
2

C C d Ddν′ ′ ′′= +  (15) 

On the other hand, Eq. (13) gives 
3 / 21 ( )m nDd C AC BC

ν ν
= − +  (16) 

Substituting (15) and (16) into (12), we obtain 
1/ 2 3 / 2

2 / 3
3 1 ( ) 0
2

m nk DC C C C AC BCγ
ν νν

⎛ ⎞′ + − + + =⎜ ⎟
⎝ ⎠

 

Rearranging the above equation yields 

1/ 2 5 / 2 1
2 / 3 5 / 3 5 / 3

3
2

mk k kADC C C C Cγ
ν ν ν

+′ + − +
1

5 / 3 0nkBD C
ν

++ =  (17) 

The above derivation has been shown in Rattanakul and 
Lenbury [15], in which it was observed that we may find exact 
solutions in three possible cases: 1) 0, 1/ 2m n= = − , 2) 

3/ 2, 0m n= = , and 3) 3 / 2, 1/ 2m n n′= = +  for some 
appropriate n′ . 

The analytic solutions given for Cases 1 and 2 in [15] did 
not satisfy some of the appropriate initial and boundary 
conditions at x = 0, namely conditions (5)-(9). Here, we 
describe how analytical solutions can be obtained in 4 cases 
which satisfy physically meaningful initial and boundary 
conditions with additional details to what has been discussed 
in [16]. 

Case 1: 10,
2

m n= = −  

For these values of m and n, we need to let 
2

5 / 3
1 2, 0, 0

3
kBDAD

BD
γν α β

ν
= − = − > = − <  (18) 

which reduces (17) into a simpler form that can be easily 
solved to yield [16]: 

1 tan( )C z Kαβ α
α

= +  (19) 

Keeping in mind that d should be increasing with z and t, 
while s should be decreasing, we realize that we need to use 
the negative square root of C in (16), so that the concentration 
of drug in solute form which will satisfy (10)-(11) can be 
written as 

( )3/2 1/2
3/2
1 tan ( ( ) ) cot ( ( ) )d x t K x t Kα β ν α β ν γ

να
=− − + + − + −  (20) 

From the integrating (10) and using the positive square root of 
C, we obtain the “concentration” of drug in solid phase as 

3 / 2
3 / 2
1 tan ( ( ) )s x t K lα β ν

να
= − − + +  (21) 

where l and K are constants of integration. 
 

So that the solution given by (20) satisfies condition (5), we 
need to set 

( )3 / 2 1/ 2 3 / 2tan cot 0K Kα α νγα+ + =  (22) 

So that the solution given by (20) satisfies condition (7), the 
following equation must be satisfied. 

{ }1/ 2 2 2
1/ 2 tan ( ) 3sec ( ) cos ( ) 0K K ec Kβ α α α

να
− =  (23) 

So that the solution given by (21) satisfies condition (6), we 
need to set 

3 / 2
0 3/ 2

1 tanl s Kα
να

= +  (24) 

Finally, so that the solution satisfies condition (9), we need to 
have 

3 / 2
3 / 2
1 tan ( )L K lα β

να
+ =  (25) 

In Fig. 1, the analytical travelling wave solution given by 
(20)-(21), subject to the conditions (19), (22)-(25), is shown to 
move in the direction of decreasing x as time elapses. 

To investigate how varying the physical parameters may 
effect the shape of the diffusing drug wave front, we plot the 
solution in Fig. 2 with a different parameter values. 
Case 2: 3 / 2, 1m n= =  

With these values of m and n, Eq. (6) becomes 
1/ 2 5/ 2 5/ 2 2

2 / 3 5/ 3 5/ 3 5/ 3
3 0
2

k k kAD kBDC C C C C Cγ
ν ν ν ν

′ + − + + =  

As done in our earlier work [16], for simplicity, we consider 
the case that 1AD = . Then, the above equation is reduced to 

1/ 2 2
2 / 3 5 / 3

3 0
2

k kBDC C C Cγ
ν ν

′ + + =  (26) 

If we now let 

2 / 33
k

α
γ

ν
= − , 2 BD

β
γν

= −  (27) 

Then, Eq. (26) can be easily solved, to yield [16] 
2

2
1 t an ( )C z Kαβ

β
= +  (28) 

where K is the constant of integration. Substituting (29) into 
(16), one obtains 

2tan ( )d z Kγ αβ= +  (29) 
So that the solution satisfies condition (5), we need to set K 

= 0. The solution then already satisfies (7). Thus, the level of 
drug in solid form is found by integrating (5) so that 

3
3

1 tan ( )s z lαβ
νβ

= − +  (30) 

l being the constant of integration. For 00 ,zs s= =  we need to 

set 0l s= . For 0,z Ls = =  the parameters have to satisfy the 
following condition 

3 3
0tan ( )L sαβ νβ=  (31) 

Thus, a travelling wave solution can be written as 
( )2tand x tγ α β ν= −  (32) 

and 
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Fig. 1 Travelling wave solution in Case 1 with 0.0170γ =  for the concentration a) d of drug in the diluted form, and b) s in 

the solid form, plotted as functions of x for different time [16]. Here, 7α π= , 
1
6

K = , L = 7.0582, 1.0043l =  , 1ν = − , k = 

10, 0.0170γ = , and 0 1s = . 
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Fig. 2 Travelling wave solution in Case 1, with parameter values different from those used in Fig. 1, for the concentration 
a) d of drug in the diluted form, and b) s in the solid form, plotted as functions of x for different time. 

Here, 1.5, , 1, 8.5086, 1.127
9

15, 0.849001LK l
π

α ν γ= = == − = = − , and 0.1k =  

0
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Fig. 3 Travelling wave solution in Case 2 for the concentration a) d of drug in the diluted form, and b) s in the solid form, plotted as 
functions of x for different time. Here, 1, 1,Dν = − = , 2.7 1895 8Lγ = = , 0.2,k = 0,K = 0 1,s = 0.3333α = − , 0.5β = − , 
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where , , ,  and A Bα β  satisfy the conditions in (27), and (31). 
The plot of the travelling wave fronts given by (32)-(33), 
satisfying (27) and (31), is then shown in Fig. 3 to move in the 
direction of decreasing x as time elapses. 
 

Case 3: 3 1,
2 2

m n= =  

In this case, equation (17) becomes [16] 
1/ 2 5/ 2 5/ 2 3/ 2

2/ 3 5/ 3 5/ 3 5/ 3
3 0
2

k k kAD kBDC C C C C Cγ
ν ν ν ν

′+ − + + =  (34) 

If we again assume (27), then (34) reduces to 
1/ 2 3 / 2

2 / 3 5 / 3
3 0
2

k kBDC C C Cγ
ν ν

′ + + =  

In order to simplify the above equation, we let 2C u= . Then, 
we have 2C uu′ ′=  which leads us to 

2 2 3
2 / 3 5 / 33 0k kBDu u u uγ

ν ν
′ + + =  (35) 

or 
0u uη μ′ − − =  (36) 

where 

2 / 3 5 / 3, , 1
3 3

k kBD ADγμ η
ν ν

= − = − =  (37) 

Solving (36), we obtain 
ln( )u z Kη μ η+ = +  

which yields, with K a constant of integration, 

[ ]1/ 2 1 exp( )C K zμ η
η

= − +  (38) 

As described in [16], using (16) we are led to 

[ ]
2 / 33 exp( )d K z
k

ν η μ= + −  (39) 

Using (10), we then obtain 

[ ]33/ 2
3

1 exp( )s C l K z lμ η
η

= + = − + +  (40) 

where l is the constant of integration. 
In order that the condition (5) is satisfied, we need 

exp K μ=  (41) 
For the condition (6) to be satisfied, we need 

( )3 3 3
0exp( )K l sμ η η− + =  (42) 

In order for the condition (8) to hold, we need 

[ ]3 3exp( ) 0K L lμ η η− + + =  (43) 
Finally, so that the interface at x = 0 is virtually impenetrable, 
we set 

exp 1Kη  (44) 
 

Case 4: 3 1,
2 2

m n n′= = + . 

A travelling wave solution has already been given in [16] for 
this case with 1ν = − , namely 

( ) ( ) /3
2

x t Dkd x t e eγ γ+⎡ ⎤= + − +⎢ ⎥⎣ ⎦
 (45) 

( ) /3
2

x t D ks l Deγ + += − −  (46) 

the derivation of which may be seen in [16]. The solution in 
(45) already satisfies (5). To satisfy conditions (6), (8), and 
(9), the parameters need to satisfy the followings respectively. 

0
3
2

kl De sγ− − =  (47) 

/3 0
2

L D kl De γ+− − =  (48) 

and 
3 1
2

ke
D
γ

−  (49) 

The plot of the solutions given by (45)-(49) is shown in Fig. 4. 
Now, let’s return to the solution we gave in [15], namely 

( ) ( ) /3
2

x t Dkd x t e eγ γ+⎡ ⎤= − + −⎢ ⎥⎣ ⎦
 (50) 

( ) /3
2

x t D ks De lγ + += − +  (51) 

leaving the readers to find more detail of the derivation in this 
case from [15]. The solution in (50) already satisfies condition 
(5). In order that the conditions (6) and (8) hold, we need the 
following equation to be satisfied respectively. 

0
3
2

kDe l sγ − + =  (52) 

/3 0
2

L D kDe lγ +− + =  (53) 

The impenetrable condition cannot be satisfied by this 
solution, but the drug being allowed to penetrate to some 
extent the interface 0x =  leads to an interesting situation 
where the level of drug drops at the tail of the wave which is 
no longer monotonically increasing, as seen in Fig. 5. 

IV. DISCUSSION AND CONCLUSION 

We have given new analytical solutions to a model of drug 
release from a planar matrix to add to our earlier work [15] 
and [16], as well as the collection of literatures in existence 
currently [17]-[19]. The solutions are expressed in the 
travelling wave coordinate which makes it convenient for us 
to investigate how the shape of the wave front of drug 
dispersion changes with different values of physical 
parameters. 

In Fig. 6, plots of the wave fronts given by (50) and (51) in 
Case 4 are shown for different values of k, which corresponds 
to the dissolution rate. We see that as k increases, the 
dissolved drug level peaks more quickly but at a lower 
maximum value. This can be expected since for this case, 

/ /1 3 3
2 2

k x D k x D
xd xe e e

D
γ +⎡ ⎤= − −⎢ ⎥⎣ ⎦

 

at 0t = , by (50). Therefore, max0 when xd x x= = , 

max
2

3

kex Dγ −
= −  
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Fig. 4 Travelling wave solution in Case 4, given by (45)-(46), for the concentration a) d of drug in the diluted form and b) s in the solid 
form, plotted as functions of x for different time. Here, we used 1, 200,  ,  0 ,0 6 130D lν γ == − = =  0.6656,L =  and 0.00000001k = . 
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Fig. 5 Travelling wave solution in Case 4, given by (50)-(51), for the concentration a) d of drug in the diluted form and b) s in the 
solid form, plotted as functions of x for different time. Here, where 010, 2 5 0 1,, , .3D s kγ == = =  1.13904, 16.4224L l= = − . 
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Fig. 6 Travelling wave solution in Case 4, given by (50)-(51), for the concentration a) d of drug in the diluted form and b) s in the 
solid form, at 0t = , plotted for different dissolution rates k. Here, 10,D =  0 2,s =  22.1 ,034γ =  while 0.1,0.2,k =  and 0.3. 
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Then, the highest concentration of dissolved drug that is 
measured after a dose is 

max

max

/
max max

3
2

x Dk
x xc d x e eγ γ=

⎡ ⎤= = − −⎢ ⎥⎣ ⎦
, (54) 

and the amount of time maxT required for d to reach the 
highest level maxc , when 1ν = − , is 

max
2

3

keT Dγ −
= −  (55) 

which decreases with k. 
On the other hand, considering (55), we can see that the 

wave front in Case 4 will reach a peak more slowly for larger 
porosity ε or larger saturation constant cs, since scγ ε= . The 
increase in the diffusivity D in contrast accelerates the drug 
concentration to attain maxc . 

In addition, curves in Fig. 5 are plotted with 
3 k

se D cε>  (56) 
while the plots shown in Fig. 6 are for the case where 

3 k
se D cε<  (57) 

We see that there is a noticeable time lag initially, before the 
concentration of d rises sharply. This is because the curve is 
concave up for a short interval of x in Fig. 5 if dilution rate 
and dissolution rate are large enough for the quantity on the 
left of (56) surpasses the product of the porosity and 
saturation constant on the right of (56). 

Such considerations discussed above are of great relevance 
to the development of targeted drug delivery systems. If the 
intention is to maintain the drug concentration at a high level, 
then the physician could consider increasing the frequency of 
drug regimen so that the next wave arrives in time to prevent 
the drop in the drug concentration below a desirable level. On 
the other hand, there is also a level MADL (maximum 
allowable dose level) below which the drug must be 
maintained to prevent side effects to the patients such as 
toxicity, or the inability of the body to remove the access 
drug, or development of drug resistance. 

According to [20], the drug fails to affect a desirable 
therapeutic response if its concentration falls below the 
effective level, the minimum acceptable delivered dose 
(MADD), and can instigate adverse reactions when it rises 
above the toxic level MADL. The plasma drug concentration 
between these two limits is termed the “therapeutic 
concentration range” or “therapeutic window” [20]. 

Our analyses thus provide important information for the 
design and manufacture of controlled drug release forms 
which take into account the above considerations, in order to 
minimize the side effects of drugs and improve a patient’s 
compliance.  
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